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Abstract. Fatigued pilots are prone to experience cognitive disorders that 
degrade their performance and adherence to high safety standards. In light 
of the current challenging context in aviation, we report the early phase of 
our ongoing project on the re-evaluation of human factors research for flight 
crew. Our motivation stems from the need for aviation organisations to 
develop decision support systems for operational aviation settings, able to 
feed-in in the organisations’ fatigue risk management efforts. Key criteria to 
this end are the need for the least possible intrusiveness and the added 
information value for a safety system. Departing from the problems in 
compliance-focused fatigue risk management and the intrusive nature of 
clinical studies, we report a neuroscientific methodology able to yield 
markers that can be easily integrated in a decision support system at the 
operational level. Reporting the preliminary phase of our live project, we 
evaluate the tools suitable for the development of a system that tracks subtle 
pilot states, such as drowsiness and micro-sleep episodes. 

1 Introduction  
Fatigue, stress and other conditions (e.g. mild stroke) can lead to micro-sleep episodes and 
subtle pilot incapacitation, meaning the progressive deterioration of a pilot’s state, which 
“escapes the normal pilot medical screening” [1,2]. The deterministic approach to cockpit 
technology, the innovation research exploring single-pilot operations, as well as the current 
crisis in the aviation industry, form a context in commotion. In the covid-19 crisis, there is 
an unravelling discussion on replacing passenger flights with cargo operations, implicating 
longer flights, and, combined with night work, a more demanding and disruptive work 
environment. In addition, many pilots have lost their jobs, inducing greater distress, 
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subjective affective states, manifested also in symptoms in the central and peripheral nervous 
system of the “survivors” [3]. These conditions are likely to impact sleep quality in terms of 
inability to fall asleep (prolonged sleep onset), frequent awakenings and non-invigorating 
sleep associated with attenuation of sleep depth (shorter slow wave activity duration). It is 
therefore argued that, a lack of human performance data system, allows lurking fatigue risks 
such as drowsiness to go undetected, and alertness levels to decrease during the critical flight 
phases (e.g. approach and landing). In addition, latest research highlights the need for airline 
level interventions [4] addressing pilot fatigue detection and including mental health.  
Previous studies, however, mainly propose models unable to capture complex human factors, 
due to isolated data collection, intrusiveness of detection and cost limitations. Aiming to 
enhance the arsenal of the neuroscientific tools, we propose a neuroergonomics framework, 
which consists of a detailed polysomnographic (PSG) sleep study accompanied with an 
elaborate neurocognitive and neurophysiological assessment. The proposed framework aims 
to elicit risk factors that are associated with fatigue patterns and to provide the appropriate 
mitigation approaches through non-pharmacological interventions. Developments regarding 
machine learning recommendation systems and potential intervention approaches are also 
described. 

2 Fatigue risk management  
At the operational level, in an effort to proactively manage aviation safety, safety 
management systems (SMS) have been set up to drive decisions based on data. Fatigue (risk) 
management involves the development and execution of a data-driven Fatigue Risk 
Management System (FRMS). Due to concrete limitations towards a truly data driven support 
system, fatigue is addressed as an isolated rest problem, and crew scheduling follows 
aeromedical requirements, the Flight Time Limitations (FTLs) to proactively manage fatigue. 
Aeromedical regulations and the selection and assessment of pilots do not predict future 
performance and health conditions but rather evaluate the condition of pilots at the time of 
assessment. Fatigue, however, may also induce boredom or even sleepiness which further 
deteriorates the pilots’ psychomotor performance. Specifically, cockpit design and 
automation are linked to pilot boredom, and concerns of complacency and distraction are 
raised in the aviation community [5]. In addition, recent studies [4] note that the pilots are 
concerned about losing their licence, with 70% of the pilots being reluctant to report fatigue 
and wellbeing problems. Fatigue risk management hence requires the appropriate decision 
support systems (DSS) incorporating pilot characteristics, yet with operationalisable 
solutions.  

In light of the latter gaps and the aforementioned focus on compliance, detection and pilot 
referral is lacking development at an operational level and fatigue management is based on 
regulatory guidance (i.e. FTLs). As a result, pilot fatigue interventions traditionally focus on 
self-management techniques. For example, studies [6] report that the top three self-
management mitigation measures for fatigue include: a) more sleep, b) reducing workload, 
and c) being self-aware and making healthy lifestyle choices. Accordingly, fatigue studies 
are based on FTLs and fatigue risk prediction for better crew planning using mathematical 
models [7], aiding compliance in operational planning. From these and similar approaches 
tools were developed, such as the Boeing Alertness Model (BAM) that focuses on capturing 
sleep inputs in order to aid planning and scheduling. The limitations of BAM are highlighted 
by the Flight Safety Foundation, where they note that the model lacks validation within an 
airline environment. Other efforts to monitor fatigue include applications such as the 
Jeppesen Crew Alert, aiming to complement FRMS. The use of such tools is intended for 
pilots, who can insert personalised settings in order to record sleep patterns, and to generate 
and share fatigue reports. An advantage of this approach is that it helps pilots to be more 
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aware of their alertness levels. Such tools extend to assessing controlled rest. For example, 
an actigraphy watch is used for the detection of sleep disorders. Latest applications in 
research show the positive effects of the latter’s use for controlled rest [8], yet, despite 
individual pilots reporting the benefits of its use, applications at an airline level are not 
reported.  

Neuroscience offers more insight into fatigue management by deploying sleep studies, 
which, however, are not utilised for operational improvements but mainly highlight the 
importance of fatigue and criticise the FTLs, engaging in policy making discussions. Eye-
tracking studies are also popular in fatigue detection [9], as well as the use of additional tools, 
such as the Psychomotor Vigilance Task (PVT), to assess reaction times and attention. Latest 
applications of the PVT include short test flights (approx. 30 minutes each) in simulated 
environments [10]. Importantly, however, a recent study of pilot cognitive workload using 
headbands in real – time operations showed differences from a simulated environment [11]. 
Significant differences between simulated and real-time environments are reported, where 
pilots commit errors they did not in the simulator [11]. Specifically, the study reports that in 
high workload phases of flight, errors were committed in the simulated environment were 
less that in the real-time environment. Hence, although, the majority of studies report lurking 
risks and the benefits of risk managing fatigue beyond the FTLs, there is no operational-
friendly system that is able to create, simple yet informative, data banks the FRMS requires. 
The papers on the value of biomedical engineering and data mining far exceed the acceptance 
of their proposed solutions for flight crew performance. 

In addition, sampling limitations are noted as previous neuroscience-focused studies 
included student [12] or inactive pilots [13]. Similarly, pilot characteristics and performance, 
and their challenges in complex environments, do not go beyond psychological profiling for 
selection purposes. In light, however, of studies documenting the pilot’s professional changes 
[14, 15], we propose that the inclusion of professional characteristics when studying subjects 
can help develop a better decision system. Decrease of training, safety practices led by 
compliance and cost-cutting needs, dependency on employers, the imbalance of investments 
between the human and the machine (human out of the loop), lack of reporting, low status 
and discretion were found as the long-term changes induced to flight crew as the industry 
grew and changed [14]. Airmanship 2.0 [15] deals with the skills required to operate an 
aircraft, extending from manual skills and the level of automation (LoA) to macro-cognitive 
factors and key areas of concern. In particular, pilots are found re-skilled in terms of gaining 
new flying skills due to automation and de-skilled in terms of manual flying. Key areas of 
concern include fatigue management, failure diagnostics, emotional self-control, complexity 
oversight and knowledge of manuals. For the purpose of our project, we distinguish between 
Automation and Employment. The latter encompasses elements that can amplify the areas of 
concern under Airmanship 2.0. Based on the latter studies, Table 1 summarises the 
framework that underpins our live study. We distinguish between the Old and New 
generation of pilots and, automation and employment characteristics. Age is included due to 
its significant relation with cognitive abilities and with knowledge, meaning the expertise, 
acquired skills and procedural knowledge [16].  

 
Table 1. Airmanship 2.0 adapted from [14,15] 

 Airmanship 2.0 
Automation Employment  

 
OldGen 
46-65 

De-skilled 
(Aviate-navigate-

communicate-manage) 

 
Reduced training-decay of 
knowledge- less discretion 
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 Airmanship 2.0 
Automation Employment  

NewGen 
20-45 

Re-skilled 
(Manage-communicate-

navigate-aviate) 

 
Debt of training-low income-

employment dependency 
 

 
We return to our underpinning framework in light of the preliminary findings reported in 

this paper. Before engaging with the data, we describe the deployed methodology for this 
early phase of our project using three cases, one from the OldGen typology and two from the 
NewGen typology.  

3 Methodology 
In this section we describe the underlying data acquisition as well as the analysis employed 
for identifying potential, fatigue risk factors. The methodological objectives support our key 
aim, namely developing a DSS that is enabled by contextual characteristics. We deploy three 
cases in order to explain our methodology. Each case underwent a different set of 
experiments and assessment in order to explore intrusiveness levels and operational value. 
The latter aimed in a) determining the value of tools for an operational setting, and b) 
exploring the value of pilot profiling in the interface with the tools. Below we explain the 
neuroscientific tools for the experiments, and we describe the cases that represent the 
typologies of OldGen and NewGen pilots.   

3.1. Polysomnographic data acquisition 

A Nihon Kohden electroencephalographic (EEG) device equipped with 32 Ag/AgCl 
electrodes was used. The EEG data were collected from 19 electrodes located according to 
the 10-20 International System. A ground electrode was placed on the prefrontal midline 
(Fpz) positions and two reference electrodes were placed on the left and right mastoids. The 
electrooculogrammic (EOG) activity gathered both vertical (blink) and horizontal 
movements by placing bipolar electrodes above and below the right eye and on the outer 
canthi of both eyes. Electromyographic (EMG) activity was recorded by a bipolar electrode 
placed on the left and right chin, whereas electrocardiographic (ECG) timeseries was 
recorded by a bipolar electrode placed above the chest. 
 
Pre-processing pipeline 
The entire night PSG data were initially divided into 10 segments of equal size in order to 
facilitate more efficient computations. From each segment a baseline removal took place 
initially by subtracting from each signal its mean value. This resulted in eliminating 
amplitude linear shifts (DC bias). Regarding the EEG data a common average re-reference 
procedure was performed. Then, digital filtering was performed through Butterworth filters 
of 2nd order as follows: 
1. High-pass filter (cut-off frequency 0.5 Hz) for further removing linear trends 
2. Low-pass filter (cut-off frequency 50 Hz) for rejecting unnecessary high frequency 

content 
3. Band stop (notch) filter among 47-53 Hz for removing industrial noise centered at 50 

Hz 
4. Band stop (notch) filter among 97-103 Hz for removing industrial noise harmonics 

centered at 100 Hz 
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5. Band stop (notch) filter among 147-153 Hz for removing industrial noise harmonics 
centered at 150 Hz 

In the case of the ECG signal the cut-off frequency of the low-pass filter was set at 20 Hz 
and at 15 Hz for the EOG. In the case of the EMG signal the cut-off frequency of the high-
pass filter was set at 10 Hz and for the low-pass at 70 Hz. Then, the algorithm of the 
Independent Component Analysis (ICA) was ran for each segment through the EEGLAB 
user interface under Matlab environment. Visual inspection of the ICA components by two 
experienced neuroscientists resulted in the rejection of artefactual sources due to blinks, 
muscle movements, bad electrode placement, ECG modulation. Finally, the data were 
epoched into continuous, non-overlapped epochs of 30 second duration and two experienced 
sleep experts were manually scored according to the guidelines of the American Association 
of Sleep Medicine (AASM) [17].  

3.2. Cognitive screening   

Neurocognitive assessment was performed through a single session of the CogScreen 
aeromedical edition (Cogscreen AM). The examination was performed in the premises of the 
AeroMedical Center and was performed by two experienced medical doctors. It is a 
computerized cognitive battery able to detect even subtle alterations in cognitive functioning. 
Although CogScreen does not focus on aviation knowledge or flying skills, it could provide 
quantified estimations of the underlying perceptual cognitive, and information processing 
abilities associated with flying. An initial rough estimate is provided by the Logistic 
Regression Probability Variation (LRPV) score of brain dysfunction. This ranges from 0 to 
1 and the higher the score the more likely a cognitive degradation is. However, it is highly 
correlated with physiological aging and its value represents only the probability of 
impairment existence and not its impact. Further information is provided by a base rate 
analysis, which describes the number of tasks that the participant scored lower than the 5th 
percentile and 15th percentile when compared to a selected normative comparison group. 
This group mainly consists of astronauts, US military and civil aviation pilots. However, it 
is possible for the examiner to establish her/his own database of pilots [18]. There are also 
tasks associated with aviation factors such as deductive reasoning, motor coordination under 
speeded conditions, visual learning and recall, visual scanning, perceptual speed, and 
working memory and visual/psychomotor tracking accuracy. 

3.3. Cases 

In this report, we include three cases of male Caucasian right-handed active pilots. The pilots 
were assessed between flights following their roster. The sleep studies took place in the night 
between their flights and the other tools were utilised in their day off. The participants did 
not report any medical or psychiatric history until now. The participants did not suffer from 
any neurologic or psychiatric disorder or human immunodeficiency virus (HIV). More 
specifically, the participants’ medical history did not contain any instance of hypertension, 
kidney disease, diabetes, liver, heart, respiratory disease or cancer diagnosis. Neurological 
examinations did not reveal any head injury, stroke, brain tumor or seizure. Psychiatric 
examinations did not reveal any anxiety, depression, learning disabilities, mood or attention 
deficit disorder. Furthermore, the participants were systemically sustained from alcohol or 
any drug substance consumption. Different characteristics were taken into account in their 
selection, such as aircraft type, rank, airline business model/operations, and career 
progression.  
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OldGen 
The first profile was of an airline captain (Case 1). Case 1 was aged 53 years old, with 18 
years of education (basic education plus six academic years).  He was an active captain for a 
large full-cost carrier with an ATP license type and 18000 total flight hours. Following the 
sleep study and the Cogscreen AM session, the participant was interviewed, in order to assess 
his perception of the current challenges, and to assess acceptability, intrusiveness feelings, 
and to compare feelings and perceptions with the experiments’ results. The interview lasted 
1hour and 28 minutes. The semi-structured interview protocol followed previously validated 
factors in order to develop the coding framework for analysis based on a) mental and temporal 
demands, b) perceived performance, and c) frustration fatigue. Physical workload was 
excluded, whereas temporal workload was analysed based on time pressure and pace of tasks, 
due to the different phases of flight.  
 
NewGen  
The second profile was of a first officer (Case 2). Case 2 was 35 years old, with 16 years of 
education (basic education plus four academic years). He was an active ATP licensed first 
officer for a small full-cost airline operating a Bae 146 with 4000 total flight hours. Case 2’s 
state was assessed only through the sleep diagnostic examination. Finally, the third profile 
was of a male first officer (Case 3). Case 3, aged 32 years old, with the same level of 
education as Case 2.  He was an active ATP licensed first officer for a small low-cost carrier 
operating an A320 with a total of 2000 flight hours and was at the time preparing to transition 
to the captain’s role. Case 3 was interviewed following the same protocol as with Case 1. 
The interview lasted 2 hours and 15 minutes. Case 3 was excluded from the sleep study but 
was included in the Cogscreen AM session.  

3.4. Neurophysiological feature extraction for drowsiness estimation  

The estimation employs features derived from the ECG, EMG and EOG in order to 
discriminate active awake from drowsiness. The ECG analysis involves time-frequency 
analysis of the heart rate variability (HRV) through the Lomb-Scargle periodogram (LSP) 
[13]. Firstly, the ECG signal was normalized and then R peaks were detected, forming thus 
the R-R timeseries. Since, the R-R timeseries does not follow a uniform sampling like the 
other biosignals we extracted its spectral component employing more advanced mathematical 
tools than the Fourier transform. More specifically, the LSP method resulted in the 
calculation of the following spectral features: The frequency with the maximum HRV power 
and the relative energy ratios of the ultra-low Frequency (<= 0.0033 Hz), very low frequency 
(0.0033 – 0.04 Hz), low frequency (0.04 – 0.15 Hz), high frequency (0.15-0.4 Hz), very high 
frequency (>= 0.4 Hz) and the range in which the frequency with the maximum power was 
detected. The EOG activity was estimated as 1) the number of blinks per minute (blink rate), 
2) mean blink amplitude, 3) the mean rise time and 4) blink duration. The EMG spectral 
features were estimated as the relative energy contribution of very low (<=4 Hz), low (4-8 
Hz), medium (8-12 Hz), high (12-24 Hz), very high (24-48 Hz) and ultra-high (48-96 Hz) of 
the chin EMG activity. The Orthogonal Discrete Wavelet Transform (ODWT) was employed 
for estimating the energy contributions with optimal time-frequency resolution [14]. The 
analysis involved 18 instances of active wake and 23 instances of drowsiness. The 
identification of each instance was assessed by two sleep experts. Each instance duration was 
1 minute (60 seconds). In summary, the analysis involved 41 minutes of PSG recordings. 
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4 Findings 

4.1. Case 1 

The coding framework (cf. 3.3) was applied on the interview data. As shown in Table 1, the 
participant shared concerns about airmanship, characterising the cockpit “so virtual [that] it 
is like a video game”, without having the knowledge of what lays “behind the system”. 
Beyond flying skills, the decision making, and other macro-cognitive and resource 
management factors are affected.  The participant’s perceived mental workload was high in 
terms of demands in effort and tasks that do not only include the cockpit ones but 24/7 
engagement with the company, online trainings, and dual roles. In detail, the participant 
reported an “extremely high” workload, and working in an environment where “everybody 
is tired” and employees are “24/7 [..] company-minded”. Temporal demands were discussed 
in different flight phases with an emphasis on alertness in critical phases. Furthermore, 
frustration fatigue was discussed through the profession’s changes affecting their knowledge, 
skills, and abilities (KSA). Employment concerns amplified frustration fatigue, involving 
emotions of stress, anger, and cynicism. In this context, the participant stressed the 
importance of experience to mediate lurking risks. The participant also noted the increase in 
his flight hours and his reluctance to report in the beginning of his career, whilst new pilots 
were characterised as ones lacking stimuli. The participant reported the intention to accept a 
wearable device in the cockpit.  

Table 2. Perceptions Case 1. 

Mental demands Temporal demands Perceived performance  Frustration 
Effort: high Time pressure: 

extremely high 
Accomplished tasks: 
Manual  

Profession: 
deterioration of KSA  
 

Tasks: continue 
outside the cockpit. 

Pace of tasks: irregular, 
lack of stimuli at 
cruising altitude.  

Least satisfaction: 
Decision making 
Information processing 
Reaction time 
Team leadership 
 

Employment: 
security, aggressive 
environment.  
 

 
Sleep macro-architecture  
The participant slept for 244.5 minutes (Figure 1). The sleep latency recorded as the duration 
from the first epoch with eyes closed and drowsiness until the first sleep (NREM1) epoch 
and was at 23.5 minutes. The duration of each sleep stage was 58.5 minutes for N1, 148.5 
minutes for N2, 18 minutes for N3, 19.5 minutes for REM. Latency periods were 37 minutes 
for N2, 138 for N3 and 252 for REM. The slow wave activity (SWA) covered the 7.36% of 
the total sleep time, while the REM period covered the 7.98% of the total sleep time. 
Moreover, the participant woke up 11 times and the total awakening period was 77.5 minutes. 
So, its sleep efficiency measured as the total sleep time divided by the entire PSG duration 
was estimated at the 65.2%. Finally, the participant experienced 44 arousal episodes. There 
were also 55 spindles and 105 K-complexes.  
 

7

MATEC Web of Conferences 314, 01003 (2020) https://doi.org/10.1051/matecconf/202031401003
ICSC-ISATECH 2019



 

 

Figure. 1. Hypnogram of OldGenCap representing the sequence of the sleep stages across the entire 
sleep recording through polysomnography 
Neurocognitive Assessment 

The LRPV score of Case 1 was 1. The aviation factor scores are displayed in Table 3. 

Table 3. Case1 performance on cognitive domains associated with aviation characteristics 

Factors Description z-score T-score 
Attribute Identification Deductive reasoning -4.14 8.56 
Motor Coordination Motor coordination under speeded 

conditions 
-0.57 55.70 

Visual Association Memory Visual learning & recall -2.08 29.19 
Speed/Working Memory Visual scanning, perceptual speed & 

working memory 
-0.32 46.84 

Tracking Visual/psychomotor tracking accuracy 0.10 48.97 

4.2. Case 2  

Sleep macro-architecture  
Case 2 slept for 471.5 minutes (Figure 2). The sleep latency was at 24 minutes. The duration 
of each sleep stage was 172 minutes for N1, 212.5 minutes for N2, 77 minutes for N3, 10 
minutes for REM. Latency periods were 30 minutes for N2, 44 for N3 and 88.5 for REM. 
The slow wave activity (SWA) covered the 16.33% of the total sleep time, while the REM 
period covered the 2.12% of the total sleep time. Moreover, the participant woke up 18 times 
and the total awakening period was 53 minutes. So, its sleep was estimated at the 82 %. 
Finally, the participant experienced 18 arousal episodes. There were also 27 spindles and 111 
K-complexes. 
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Figure. 2. Hypnogram of Case 2 representing the sequence of the sleep stages across the entire sleep 
recording through polysomnography 

4.3. Case 3 

Neurocognitive Assessment 

The LRPV score of Case 3 was 1. The aviation factor scores are displayed in Table 4 below. 
Table 4. Case 3 performance on cognitive domains associated with aviation characteristics. 

Factors Description z-score T-score 
Attribute Identification Deductive reasoning -2.33 26.70 
Motor Coordination Motor coordination under speeded 

conditions 
-2.03 70.28 

Visual Association 
Memory 

Visual learning & recall -0.22 47.85 

Speed/Working Memory Visual scanning, perceptual speed & 
working memory 

-1.57 34.30 

Tracking Visual/psychomotor tracking accuracy -1.16 61.58 
 

Case 3 interview data are presented in Table 5. Case 3 was frustrated and discussed in 
depth his concerns about the use of FTLs in small airlines, where rest according to regulations 
is followed to risk manage fatigue. Case 3 focused on the operational needs of airlines 
indicating that “what can be done in the minimum will be done in the minimum” and showing 
the interviewer a heavy night shift roster. Case 3 reports signs of accumulative fatigue, stating 
that he is flying the maximum hours possible and then returning to work tired “even after 
days off”. “Bad management of flight crew” and that FRMS “is not in place”, centered the 
discussion showing lack of peer or company support. Daily incidents in the airline’s 
operations were characterised as “safe failures”, but several AOGs (aircraft on ground) put 
more pressure on the operations. Regarding the temporal demands, Case 3 noted that there is 
a decrease in workload but that it is critically high in take-off and approach. Job insecurity 
(frustration fatigue) and high mental demands were noted as by Case 1. However, tasks are 
perceived as routine, and performance is perceived as appropriate for operating the aircraft. 
As in Case 1, Case 3 reported the intention to accept a wearable device in the cockpit.  
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Table 5. Perceptions Case 3. 

Mental demands Temporal demands Perceived 
performance  

Frustration 

Effort: high Time pressure: high  Accomplished tasks: 
Operating the aircraft 

Profession:  
skills vs. knowledge 
of systems 
 

Tasks: routine Pace of tasks: high 
demand in critical phases 
of flight.   

Least satisfaction: 
Developmental 
training 
 

Employment: 
insecurity 
 

4.4. Neurophysiological drowsiness estimation 

The Matlab software was used to develop a drowsiness classifier based on the 
aforementioned features. We explored decision trees (fitted binary classification decision 
trees) as potential classifiers in order to result in a rule-based algorithm that would be easily 
interpreted in aviation and industrial settings. More specifically, we used active wake and 
drowsiness data from the two participants το train and test the classifier. There were 32 active 
wake and 33 drowsiness data epochs. The train set consists of 44 epochs and the test set of 
21 epochs. The decision tree in Figure 3 was developed based on the train data and then its 
performance was validated in the test data, which were not previously used in the training 
phase. The root (most important feature) of the decision tree was the low frequency of the 
HRV timeseries. Then EMG low frequency and blink rate (number of blinks per minute) 
were demonstrated to further discriminate among the two classes. Finally, the blink amplitude 
was also an important factor. The resulted tree correctly classified 17/21 of the test instances. 
So, its classification performance was at 80.95%. A more detailed description of the method’s 
classification accuracy is the following: a) True Positive 9/10 (90%), b) True Negative: 8/11 
(72.73%), c) False Positive: 3/11 (27.27%), d) False Negative 1:10 (10%). 
 

 
Figure. 3. Visualization of the rule-based algorithm (binary decision tree) for drowsiness detection 
based on the participants' heart-rate variability, chin electromyographic and eye blink activity. 
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5 Discussion & recommendations 
The Airmanship 2.0. based framework is supported by all cases in the preliminary findings, 
and the typologies aided analysis and interpretation. In accordance with the literature on 
airline fatigue risk management, we explored the options that best fit the purpose of our 
methodology and the objectives of our project. These options satisfy the criteria of minimal 
intrusiveness and of operationalisability of tools for DSS development. Based on these 
criteria, Cogscreen AM was included in our deployed tools because of its low cost, ease of 
deployment and validity. In the Cogscreen sessions with Cases 1 and 3 inadequate scores 
indicate a degradation of cognitive abilities. Case 1 had over 30 years of professional 
experience in military and civil aviation, including the employment in different airlines, and 
the operation of various aircraft types with different approaches to the role of technology in 
the cockpit. Case 3 had 9 years of experience and mainly in the flight training industry before 
transiting to airlines performing better in the session but still producing low scores. Although 
Cogscreen AM was initially designed by the FAA based on military pilots, applications took 
place in samples of commercial pilots reporting a clear prediction of cockpit performance 
[18]. In cases where Cogscreen AM was applied in older groups of aviation employees the 
scores were lower as in Case 1. Our preliminary results, however, do not support the 
mediating effect of training and experience reported in other aviation professional groups 
such as air traffic controllers [19], showing a need for greater analysis on LoA. A re-
evaluation of the assessment tool that takes into consideration the local population 
characteristics, including the attitudes of pilots and their airmanship, could be further 
explored to address such questions.  In addition, as explained earlier (cf. Section 3.3), 
aeromedical examiners could create their own data banks. Similar concerns and propositions 
are reported where a multi-modal deep learning network can aid the classification of mental 
modes of pilots [20]. Nevertheless, in combination with the interview data, the Cogscreen 
results gain importance because these are in contrast with the perceived performance of Case 
1 and Case 3.  Both cases show confidence, yet in different systems; Case 1 in experience 
and Case 3 in automation. The latter supports the transition between generations from aviate-
navigate-communicate-manage to manage-communicate-navigate-aviate.  

Moreover, the sleep analysis of Cases 1 and 2 showed that there is a possibility of a sleep 
disorder. In Case 1, drowsiness lasted much longer than normal (almost up to 100 epochs), 
including 30 seconds outliers going from drowsiness to active wake. The lack of rest is 
evident (cf. Figures 1, 2), as N1 should have been within a range of 6-10 minutes and for 
Case 1 it was of 58.5 minutes, with lapses between N1 and drowsiness. Similarly, the 
participant went into N2 for less than the expected normal range of 1 to 2 hours. Importantly, 
the short periods of stages N3 and REM (i.e. N3 18 minutes and REM 19 minutes) indicate 
no rest and the fall into REM due to sleep deprivation. Similarly, Case 2 also shows signs of 
a sleep disorder. Although Case 2 slept longer than Case 1, short periods of REM are also 
observed, showing that the pilot did not rest. Because, however, we did not perform 
pathological examinations the possibility of this being an effect of apnea could not be ruled 
out. It is recommended that other studies examine apnea due to its effects. It is noteworthy to 
remind readers the Go! 2009 incident, when both pilots fell asleep during cruising altitude 
and the NTSB reported obstructive sleep apnea as the cause of the incident. Our preliminary 
report hence finds support in cases and concerns of pilot drowsiness [20]. In order, however, 
to be able to deploy the value of polysomnography from a research to an operational setting 
in a meaningful manner for fatigue risk management, a less time-consuming instrumentation 
is required. Decision trees are commonly used in aviation operations and have many 
similarities with other failure analysis trees applied in the industry, able to possibly gain 
greater acceptance by safety professionals. Furthermore, such data can aid peer pilot support 
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programmes, extending the DSS for the enabling of awareness and self-declaration, and, if 
need be, referral.  

However, although the classification of the proposed decision tree is scientifically 
acceptable (above 80%), its employment in aviation condition needs its further improvement. 
The latter could be achieved by including data from more participants (>=25), which will 
allow the algorithm’s generalization. Then, more sophisticated machine learning algorithms 
(Support Vector Machines, neural networks) could be also employed to further improve the 
classification accuracy [21, 22]. In case of also employing brain activity data (e.g. wearable 
EEG devices), the number of estimated features would result in a big data perspective which 
may facilitate the use of deep learning algorithms [23]. The above steps may serve for a future 
roadmap towards the reliable integration of deep learning applications as onboard 
infrastructure for drowsiness estimation. The features used in the decision tree are in 
accordance with previous neuroscientific evidence. More specifically, the low frequency of 
the HRV timeseries is associated with the sympathetic branch of the autonomic nervous 
system. Drowsiness and sleep onset are closely related with the inhibition of sympathetic 
activity [24]. According to the AASM sleep scoring rules, drowsiness is mainly characterized 
by the onset of the alpha rhythm [25], which is associated by attenuated chin EMG and blink 
activity. Since, the features involved in the classification was only selected by the tree 
algorithm and not the developers, this is an evidence that the proposed methodology is of 
scientific and clinical validity. At operational levels, it would be easily implemented through 
microphones or cameras, whereas wearable devices with a bipolar electrode could provide 
more reliable, spectral EMG features.  

6 Conclusion 
Our paper marks a call for the selection of meaningful data and their sustainable use in air 
transport organisations. In the dynamic aviation environment, changes affect the pilots’ 
willingness to report fatigue, their nature of work and their lifestyle. In this context, a pilot’s 
capacity for information processing is radically decreased and their attention level 
diminishes, which may result in erroneous responses to crucial flight tasks. Following the 
Airmanship 2.0. dimensions, we reported the preliminary findings of a live project. The 
proposed systematic data collection method aims to promote evidence-based decision 
making and to address complex and least quantifiable pilot performance parameters, such as 
fatigue and sleep disorders. Our methodology employed both bio-signal processing and 
machine learning techniques to provide an objective estimator of drowsiness level. However, 
a greater amount of data is required in order to provide definitive results that could provide 
evidence-based feedback for policy making activities in the field of pilot fatigue. More 
advanced recording modalities such as EEG activity could be also employed to quantify the 
fatigue level prior entering a drowsiness state. However, we should bear in mind that a 
compromise among classification accuracy and unobtrusiveness should be made in order to 
result in applicable scientific solutions easily accepted by the aviation community. Further 
research should explore the relationship between boredom and drowsiness in the cruising 
altitude of flight with high LoA, the characteristics of pilots today and possible applications 
of such tools in peer pilot support programmes.  
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