Towards Live Domain-Specific Languages
From Text Differencing to Adapting Models at Runtime

Riemer van Rozen · Tijs van der Storm

Abstract Live programming is a style of development characterized by incremental change and immediate feedback. Instead of long edit-compile cycles, developers modify a running program by changing its source code, receiving immediate feedback as it instantly adapts in response.

In this paper we propose an approach to bridge the gap between running programs and textual Domain-Specific Languages (DSLs). The first step of our approach consists of applying a novel model differencing algorithm, TMDIFF, to the textual DSL code. By leveraging ordinary text differencing and origin tracking, TMDIFF produces deltas defined in terms of the meta model of a language.

In the second step of our approach the model deltas are applied at runtime to update a running system, without having to restart it. Since the model deltas are derived from the static source code of the program, they are unaware of any runtime state maintained during model execution. We therefore propose a generic, dynamic patch architecture, RMPATCH, which can be customized to cater for domain-specific state migration. We illustrate RMPATCH in a case study of a live programming environment for a simple DSL implemented in RASCAL for simultaneously defining and executing state machines.

1 Introduction

The “gulf of evaluation” represents the cognitive gap between an action performed by a user and the feedback provided to her about the effect of that action [25]. Live programming aims to bridge the gulf of evaluation by shortening the feedback loop between editing a program’s textual source code and observing its behavior. In a live programming environment the running program is updated instantly after every change to the code [34]. As a result, developers immediately see the behavioral effects of their actions, and learn predicting how the program adapts to targeted improvements to the code. In this paper we are concerned with providing generic, reusable frameworks for developing “live DSLs”, languages whose users enjoy the immediate feedback of live execution. We consider such techniques to be first steps towards providing automated support for live languages in language workbenches [8].

In particular, we propose two reusable components, TMDIFF and RMPATCH to ease the development of textual live DSLs, based on a foundation of meta modeling and model interpretation. TMDIFF is used to obtain model-based deltas from textual source code of a DSL. These deltas are then applied at runtime by RMPATCH to migrate the execution of the DSL program [35]. This enables the users of a DSL to modify the source and immediately see the effect.

The first component of our approach is the TMDIFF algorithm [43]. TMDIFF employs textual differencing and origin tracking to derive model-based deltas from changes to textual source code. A textual difference is translated to a difference on the abstract syntax of the DSL, as specified by a meta model. As a result, standard model differencing algorithms (e.g., [1]) can be applied in the context of textual languages.

The second component, RMPATCH, is used to dynamically adapt model execution to changes in the source code. This is achieved by “patching” the execution using the deltas produced by TMDIFF. We call differences applied to running programs executable deltas. To apply executable deltas we require that a language is implemented as a model inter-
preprocessor [30]. In particular, we require that every class defined in a language’s meta model has an implementation counterpart in some programming language (we use Java). The RMPATCH architecture supports applying an executable delta on the instances of those classes while the model is interpreted. To support runtime state, we allow the runtime classes to extend the classes of the meta model with additional attributes and relations. Since the deltas produced by TMDIFF are unaware of those attributes and relations, the RMPATCH engine is designed to be open for extension to cater for migrating such domain-specific runtime state. RMPATCH has been applied in the development of a prototype live programming environment for a simple state machine DSL. A state machine definition can be changed while it is running, and the runtime execution will adapt instantly.

The key contribution of this paper is the combination of textual model differencing and runtime model patching for adapting models at runtime with “live” textual DSLs, and to this end:

- We reiterate how textual differencing can be used to match model elements based on origin tracking information and provide a detailed description of TMDIFF, including a prototype implementation (Section 3).
- We present a generic architecture for runtime patching of interpreted models (Section 4).
- We illustrate the framework using a live DSL environment for a simple state machine language (Section 5).

This article is an extended version of our previous work “Origin Tracking + Text Differencing = Textual Model Differencing”, published in Theory and Practice of Model Transformations, ICMT, 2015 [43]. In particular, the present paper extends that work with the patch architecture (RMPATCH), as well as the live state machine case study. For the evaluation of TMDIFF itself we refer to the original paper [43].

2 From Text Differencing to Live Models at Runtime

We motivate our work by taking the perspective of developers who use textual DSLs to iteratively modify and improve programs. Fig. 1 gives an overview of the challenge of bridging the gap between a developer’s textual model edits and the associated program behavior that the developer needs to quickly observe, understand and improve.

A developer writes a program (foo) in some language (lang), which can be executed to obtain its behavior. The developer then evolves the program to a new version (foo’) by updating its source, yielding a textual difference. In a traditional setting, the effect of the change can only be observed by re-executing the program. However, this involves compiling and executing the program from scratch. This can be a time-consuming distraction, losing all dynamic context observed while running foo. In particular, all runtime state accumulated during the execution of program version foo is lost when its next version foo’ is executed (again). We aim to make this experience more fluid and live by obtaining a “runtime diff” from the textual “diff” between successive program versions (foo and foo’), and then migrating its execution (from Behavior(foo) to Behavior(foo’)) at runtime.

Fig. 2 shows an overview of our solution to this problem. The foo program is mapped to an instance of a meta model (MM), through parsing and name resolution. Parsing constructs an initial containment hierarchy of the program in the form of an Abstract Syntax Tree (AST). Name resolution, on the other hand, creates cross references in the model based on the (domain-specific) referencing and scoping rules of the language, yielding an Abstract Syntax Graph (ASG). The model is then executed by an interpreter, which creates a runtime model corresponding to foo. This runtime model is an instance of an enhanced meta model (MM+), representing runtime state as additional attributes and relations. We require that MM+ is an extension of MM.

Whenever the developer evolves the program’s source, the textual difference between foo and foo’ is now mapped to a model-based delta over the meta model MM using TMDIFF. Such a delta consists of an edit script which changes the model of foo to a model representing foo’. That delta is then applied as an executable delta to the executing runtime model of foo by RMPATCH. Because the executing model has additional runtime state that could become invalid, RMPATCH needs to be augmented with language-specific migrations. The generic part of RMPATCH will only migrate
the parts defined by MM; the domain-specific customization defines what to do with the extensions defined by MM^+. At specific points during execution, the interpreter will swap out the old version of the model, and start executing the new one, without having to restart, and without losing state.

Note that the parts in boxes are the components that are language-specific. This includes parsing and name resolution, which often need to be defined anyway, and a model-based interpreter. TMDIFF is completely language parametric, and thus can be reused for multiple live DSLs. RMPATCH is partially generic: it is generically defined for deltas produced by TMDIFF, but needs to be extended for dealing with the runtime state extensions defined by MM^+.

The rest of the paper is structured as follows. Next in Section 3 we describe how TMDIFF works. In Section 4 we show how the deltas produced by TMDIFF are applied at runtime using the generic patch architecture of RMPATCH. The customization of this architecture to support runtime state migration is described as part of our case study based on state machines in Section 5. We show how this enables a live programming environment for state machines using a prototype interpreter. We conclude the paper with a discussion of related work and an outline for further research.

3 TMDiff: Textual Model Diff

3.1 Overview

TMDIFF is a novel differencing algorithm that leverages ordinary text differencing and origin tracking to derive model-based deltas from textual source code. Traditional model differencing algorithms (e.g., [1]) determine which elements are added, removed or changed between revisions of a model. A crucial aspect of such algorithms is that model elements need to be identified across versions. This allows the algorithm to determine which elements are still the same in both versions. In textual modeling [11], models are represented as textual source code, similar to DSLs and programming languages.

The actual model structure represented by an Abstract Syntax Graph (ASG) is not first-class, but is derived from the text by a text-to-model mapping, which, apart from parsing the text into an Abstract Syntax Tree (AST) specifying a containment hierarchy also provides for reference resolution. After every change to the text, the corresponding structure needs to be derived again. As a result, the identities assigned to the model elements during text-to-model mapping are not preserved across versions, and model differencing cannot be applied directly.

Existing approaches to textual model differencing are based on mapping textual syntax to a standard model representation (e.g., languages built with Xtext are mapped to EMF [9]) and then using standard model comparison tools (e.g., EMFCompare [3,6]). As a result, model elements in both versions are matched using name-based identities stored in the model elements themselves. One approach is to interpret such names as globally unique identifiers: match model elements of the same class and identity, irrespective of their location in the containment hierarchy of the model. Other approaches are to match elements in collections at the same position in the containment hierarchy, to use similarity-based heuristics or to construct a purpose-built algorithm.

Unfortunately, each of these approaches has its limitations. In the case of global names, the language cannot have scoping rules: it is impossible to have different model elements of the same class with the same name. On the other hand, matching names relative to the containment hierarchy entails that scoping rules must obey the containment hierarchy, which limits flexibility in terms of scoping. While similarity-based matching techniques can deal with scopes, these may also require fine-tuning the heuristic to obtain more accurate results for specific languages and uses.

TMDIFF is a language-parametric technique for model differencing of textual languages with complex scoping rules, but at the same time is agnostic of the model containment hierarchy. As a result, different elements with the same name, but in different scopes can still be identified. TMDIFF is based on two key techniques:

– **Origin tracking.** In order to map model element identities back to the source, we assume that the text-to-model mapping applies origin tracking [13,40]. Origin tracking induces an origin relation which relates source locations of definitions to (opaque) model identities. Each semantic model element can be traced back to its defining name in the textual source, and each defining name can be traced forward to its corresponding model element.

– **Text Differencing.** TMDIFF identifies model elements by textually aligning definition names between two versions of a model using traditional text differencing techniques (e.g., [28]). When two names in the textual representations of two models are aligned, they are assumed to represent the same model element in both models. In combination with the origin relation this allows TMDIFF to identify the corresponding model elements as well.

The resulting identification of model elements can be passed to standard model differencing algorithms, such as the one by Alanen and Porres [1].

TMDIFF enjoys the important benefit that it is fully language parametric. TMDIFF works irrespective of the specific binding semantics and scoping rules of a textual modeling language. In other words, how the textual representation is mapped to model structure is irrelevant. The only requirement is that semantic model elements are introduced using symbolic names, and that the text-to-model mapping performs origin tracking.
Here we introduce textual model differencing using a simple motivating example that is used as a running example throughout the paper. Figure 3 shows a state machine model for controlling doors. It is both represented as text (left) and as object diagram (right). A state machine has a name and contains a number of state declarations. Each state declaration contains zero or more transitions. A transition fires on an event, and then transfers control to a new state.

The symbolic names that define entities are annotated with unique labels \(d_i\). These labels capture source locations of names. That is, a name occurrence is identified with its line and column number and/or character offset. Since identifiers can never overlap, labels are guaranteed to be unique, and the actual name corresponding to label can be easily retrieved from the source text itself. For instance, the machine itself is labeled \(d_1\), and both states \(closed\) and \(open\) are labeled \(d_2\) and \(d_3\) respectively.

The labels are typically the result of name analysis (or reference resolution), which distinguishes definition occurrences of names from use occurrences of names according to the specific scoping rules of the language. For the purpose of this paper it is immaterial how this name analysis is implemented, or what kind of scoping rules are applied. The important aspect is to know which name occurrences represent definitions of elements in the model.

By propagating the source locations \(d_i\) to the fully resolved model, symbolic names can be linked to model elements and vice versa. On the right of Fig. 3, we have used the labels themselves as object identities in the object model. Note that the anonymous Transition objects lack such labels. In this case, the objects do not have an identity, and the difference algorithm will perform structural differencing (e.g., [45]), instead of semantic, model-based differencing.

Figure 4 shows two additional versions of the state machine of Fig. 3. First the machine is extended with a locked state (Fig. 4a). Second, Doors3 (Fig. 4b), shows a grouping feature of the language: the locked state is part of the locking group. The grouping construct acts as a scope: it allows different states with the same name to coexist in the same state machine model.

Looking at the labels in Fig. 3 and 4, however, one may observe that the labels used in each version are disjoint. For instance, even though the defining name occurrences of the machine \(doors\) and state \(closed\) occur at the exact same location in \(Doors_2\) and \(Doors_3\), this is an accidental result of how the source code is formatted. Case in point is the name \(locked\), which now has moved down because of the addition of the group construct.

The source locations, therefore, cannot be used as (stable) identities during model differencing. The approach taken by TMDIFF involves determining added and removed definitions by aligning the textual occurrences of defining names (i.e. labels \(d_i\)). Based on the origin tracking between the textual source and the actual model we identify which model elements have persisted after changing the source text.

This high-level approach is visualized in Fig. 5. \(src_1\) and \(src_2\) represent the source code of two revisions of a model. Each of these textual representations is mapped to a proper model, \(m_1\) and \(m_2\) respectively. Mapping text to a model induces origin relations, \(origin_1\) and \(origin_2\), mapping model elements back to the source locations of their defining names in \(src_1\) and \(src_2\) respectively. By then aligning these names between \(src_1\) and \(src_2\), the elements themselves can be identified via the respective origin relations.

TMDIFF aligns textual names by interpreting the output of a textual \texttt{diff} algorithm on the model source code. The diffs between \(Doors_1\) and \(Doors_2\), and \(Doors_2\) and \(Doors_3\) are shown in Fig. 6. As we can see, the diffs show for each line whether it was added (\texttt{"+"}) or removed (\texttt{"-"}). By looking at the line number of the definition labels \(d_i\) it becomes possible to determine whether the associated model element was added or removed.

\footnote{1 For the sake of presentation, we use the abstract labels \(d_i\) for the rest of the paper, but keep in mind that they represent source locations.}

\footnote{2 The diffs are computed by the \texttt{diff} tool included with the \texttt{git} version control system. We used the following invocation: \texttt{git diff --no-index --patience --ignore-space-change}}

Fig. 3: \(Doors_1\): a simple textual representation of a state machine and its model.

Fig. 4: Two new versions of the simple state machine model \(Doors_1\).
Fig. 5: Identifying model elements in m_1 and m_2 through origin tracking and alignment of textual names.

```
--- a/doors1.sl
+++ b/doors2.sl
@@ -4,4 +4,3 @@
   + lock => locked
   + lock => locking.locked
   + unlocking
   + unlocked
   + unlocked
```

Fig. 6: Textual diff between $Doors_1$ and $Doors_2$, and $Doors_2$ and $Doors_3$.

```
create State d7
   d7 = State("locked", [Trans("unlock", d2)])
```

```
create Group d11
   d11 = Group("locking", [d7])
```

```
d2.out[1] = Trans("lock", d7)
d1.states[2] = d7
```

```
```

```
(a) tmdiff $Doors_1$ $Doors_2$
(b) tmdiff $Doors_2$ $Doors_3$
```

Fig. 7: TMDIFF differences between $Doors_i$ and $Doors_{i+1}$ ($i \in \{1, 2\}$)

For instance, the new "locked" state was introduced in $Doors_2$. This can be observed from the fact that the diff on the left of Fig. 7 shows that the name "locked" is on a line marked as added. Since the names doors, closed and opened occur on unchanged lines, TMDIFF will identify the corresponding model elements (the machine, and the two states) in $Doors_1$ and $Doors_2$. Similarly, the diff between $Doors_2$ and $Doors_3$ shows that only the group locking was introduced. All other entities have remained the same, even the locked state, which has moved into the group locking.

With the identification of model elements in place, TMDIFF applies a variant of the standard model differencing introduced in [1]. Hence, TMDIFF deltas are imperative edit scripts that consist of edit operations on the model. Edit operations include creating and removing of nodes, assigning values to fields, and inserting or removing elements from collection-valued properties. Figure 7 shows the TMDIFF edit scripts computed between $Doors_1$ and $Doors_2$ (a), and $Doors_2$ and $Doors_3$ (b). The edit scripts use the definition labels d_n as node identifiers.

The edit script shown in Fig. 7 captures the difference between source version $Doors_1$ and target version $Doors_2$. It begins with the creation of a new state d_7. On the following line d_7 is initialized with its name ("locked") and a fresh collection of transitions. The transitions are contained by the state, so they are created anonymously (without identity). Note that the created transition contains a (cross-)reference to state d_2. The next step is to add a new transition to the out field of state d_2 (which is preserved from $Doors_1$). The target state of this transition is the new state d_7. Finally, state d_7 is inserted at index 2 of the collection of states of the machine d_1 in $Doors_3$.

The edit script introducing the grouping construct locking between $Doors_2$ and $Doors_3$ is shown in Fig. 7. The first step is the creation of a new group d_{11}. It is initialized with the name "locking". The set of nested states is initialized to contain state d_7 which already existed in $Doors_2$. Finally, the state with index 2 is removed from the machine d_4 in $Doors_3$, and then replaced by the new group d_{11}.

In this section we have introduced the basic approach of TMDIFF using the state machine example. The next section presents TMDIFF in more detail.

3.2 TMDiff in More Detail

Top-level Algorithm

Figure 8 shows the TMDIFF algorithm in high-level pseudo code. Input to the algorithm are the source texts of the models (src_1, src_2), and the models themselves (m_1, m_2). The first step is to determine corresponding elements in m_1 and m_2 using the matching technique introduced above. We further describe the match function later in this section.

Based on the matching returned by match (line 2), TMDIFF first generates global Create operations for nodes that are in the A set (line 3). After these operations are created, the matching M is “completed” into M', by mapping ev-
Matching

The match function uses the output computed by standard `diff` tools. In particular, we employ a `diff` variant called `Patience Diff`, which is known to often provide better results than the standard, LCS-based algorithm [31].

The matching algorithm is shown in Fig. 9. The function match takes the textual source of both models (`src1`, `src2`) and the actual models as input (`m1`, `m2`). It first projects out the origin and class information for each model (lines 1–2). The resulting projections `P1` and `P2` are sequences of tuples <x,m,c,l>, where x is the symbolic name of the entity, m its class (e.g. State, Machine, etc.), l the textual line it occurs on and d the object itself.

As an example, the projections for `Doors1` and `Doors2` are as follows:

```plaintext
P1 = [(doors, Machine, 1, d1),
      (closed, State, 2, d2),
      (opened, State, 5, d3)]
```

Next we explain how the matching result is used for differenting nodes.

Differencing

The heavy lifting of `TMDIFF` is realized by the `diffNodes` function. It is shown in Fig. 10. It receives an existing entity as the current context (`ctx`), the two elements to be compared (`m1` and `m2`), a Path `p` which is a list recursively built

```plaintext
list[Operation] diffNodes(obj ctx, obj m1, obj m2, Path p, M)
```
up out of names and indexes and the matching relation to provide reference equality between elements in \(m_1 \) and \(m_2 \). \(\text{diffNodes} \) assumes that both \(m_1 \) and \(m_2 \) are of the same class (line 3). The algorithm then loops over all fields that need to be differenced (lines 5–17). Fields can be of four kinds: primitive (lines 6–7), containment (lines 8–12), reference (lines 13–14) or list (lines 15–16). For each case the appropriate edit operations are generated, and in most cases the semantics is straightforward and standard. For instance, if the field is list-valued, we delegate differencing to an auxiliary function \(\text{diffLists} \) (not shown) which performs Longest Common Subsequence (LCS) differencing using reference equality. The interesting bit happens when differencing reference fields. References are compared via the matching \(M \), highlighted in Figure 10.

In order to know whether two references are “equal”, \(\text{diffNodes} \) performs a reverse lookup in \(M \) on the reference to \(m_2 \) (line 13). If the result of that lookup is different from the reference in \(l_1 \) the field needs to be updated. Recall that \(M \) was augmented to \(M' \) (cf. Fig. 8) to contain entries for all newly created model elements. As a result, the reverse lookup (line 14) is always well-defined. Either we find an already existing element of \(m_1 \), or we find a element created as part of \(m_2 \), highlighted in Fig. 10.

3.3 Implementation in RASCAL

We have implemented TMDIFF in RASCAL, a functional programming language for meta programming and language workbench for developing textual DSLs [16]. The code for the algorithm, the application to the example state machine language, and the case study can be found on GitHub.

Since RASCAL is a textual language workbench [7] all models are represented as text, and then parsed into an abstract syntax tree (AST). Except for primitive values (string, boolean, integer etc.), all nodes in the AST are automatically annotated with source locations to provide basic origin tracking.

Source locations are a built-in data type in RASCAL (\(\text{loc} \)), and are used to relate sub-trees of a parse tree or AST back to their corresponding textual source fragment. A source location consists of a resource URI, an offset, a length, and begin/end and line/column information. For instance, the name of the closed state in Fig. 5 is labeled:

\[
\text{project://textual-model-diff/input/doors1.sl(22,6,<2,8>,<2,14>)}
\]

Because RASCAL is a functional programming language, all data is immutable and first-class references to objects are unavailable. Therefore, we represent the containment hierarchy of a model as an AST, and represent cross-references by explicit relations \(\text{rel}[\text{loc} \text{from}, \text{loc} \text{to}] \), once again using source locations to represent object identities.

4 RMPatch: Generic Runtime Model Patching

4.1 Overview

The previous section described the TMDIFF algorithm to obtain model-based deltas from textual source files. Here we introduce RMPATCH, a generic architecture to apply these deltas to runtime models that drive the execution of the models of a language. During interpretation of such a model, users edit the textual model using a live programming environment that embeds TMDIFF for generating deltas for successive model versions, as shown in Fig. 11 on the left. These edit scripts are applied by RMPATCH to migrate the model as part of the running program to reflect the new version of the source code, as shown in Fig. 11 on the right. Together TMDIFF and RMPATCH provide a foundation for the design and implementation of live programming environments, where textual models can be edited while they are executing.

In order to provide a unified approach for recording and replaying model differences, we record a runtime history of events such as user interactions and changes to the source code as edit operations on the runtime model. This history can be used for implementing “undo”, persisting application state (cf. event sourcing), and back-in-time debugging. When the developer edits a textual model and saves a modified version, the programming environment applies TMDIFF to the current and the previous version of the textual model. It then passes the resulting delta to RMPATCH, which pauses the interpreter, applies the delta to the runtime model, possibly migrating runtime state, and continues the interpreter. Similarly, we also represent the effects of other events as deltas, e.g., resulting from a user pressing a button or a sensor firing. In Fig. 11 the oval “events” represents these cases.

In prior work [43], we have evaluated TMDIFF on the version history of file format specifications written in Der-
ric, a real-life DSL that is used in digital forensics analysis [37]. We found that TMDIFF reliably computes small deltas between consecutive versions of the Derric specifications of JPEG, GIF, and PNG.

Fig. 11: Approach: using TMDIFF and RMPATCH for live programming with textual models.
4.2 Models at Runtime

Live programming environments enable adapting models at runtime as text. Specifically, a model is an instance of a static meta model of a language represented by an ASG, which is obtained from text through parsing and name resolution. RMPATCH requires that a model interpreter is implemented in an object-oriented language, like Java. In particular, it requires reflection for interpreting executable deltas that create objects and assign values to fields. The interpreter executes a model as a runtime model, an instance of a runtime meta model, which extends the static meta model of the language by adding additional attributes and relations to model runtime state, and methods that implement behavior.

For instance, a state machine can be executed by interpreting incoming events and updating a current state attribute. In between such transitions, the run-time model may need to be migrated however, because, in a live programming environment, the source code of the state machine may have changed in the meantime. At dedicated points in the execution, the interpreter must check for pending deltas (as produced by TMDIFF), and if there are any, apply them to the run-time model, before continuing execution.

4.3 Applying Deltas at Runtime

The deltas produced by TMDIFF are converted to run-time edit operations that can be evaluated against an instance of the runtime meta model. Every change computed by TMDIFF can be mapped to a change at run time, because the model of the source is subsumed by the run-time model. Applying a runtime delta contributes a sequence of atomic edits to the runtime history of the running program. The edit operations produced by TMDIFF, however, are unaware of any additional state maintained in the run-time models. For avoiding information loss and invalid run-time states, RMPATCH can be extended with custom state migrations. Migration effects are represented as model edits too, making them part of the run-time history.

Recall that TMDIFF produces edit scripts as shown in Figure 7:

```
call State d7 // create
d7 = State("locked", [Trans("unlock", d2)]) // setTree
d2.out[1] = Trans("lock", d7) // insertTree
d1.states[2] = d7 // insertRef
```

Such a script is represented as a list of edits, such as create, setTree, insertTree and insertRef. In addition to these four, TMDIFF generates delete, setPrim, remove, insertRef and setRef operations. Create and delete are global operations, creating or deleting objects from the model, respectively. The other, relative operations traverse a path through the features of their owner object, the object operated on,

(e.g., d_7, d_2, or d_1), and modify the traversed field accordingly. For instance, the last operation in the edit script above, inserts state d_7 in the machine’s (d_1) list of states at index 2.

The edit operations setTree and insertTree take trees as arguments. Java makes no distinction between a tree argument’s containment references and cross references, and encodes both as object references. We therefore flatten tree operations to a sequence of create, setPrim, setRef and insertRef operations. As a result RMPATCH only implements these operations, and delete and remove.

Owner objects are represented using opaque identities used internally by TMDIFF. RMPATCH maintains an object-space table that maps these identities to Java objects. The create and delete operations respectively add and remove objects in this table. Since the identities are not stable across versions of a model, RMPATCH uses the TMDIFF matching (see Section 3.2) information to adjust the object space to reflect the situation after the edit operations have been applied.

Applying the edit operations to the runtime model is implemented using the Visitor pattern [10]. A base visitor defines visit methods for each type of edit operation, and modifies the current model according to the semantics of the operation. When an edit has been applied, it is added to the global history object to support undo and replay.

The application of edit operations to a run-time model is unaware of invariants concerning the run-time state extensions of that model. Naively applying a TMDIFF delta to the run-time model of a DSL program, might bring its execution in an inconsistent state. For instance, in the case of state machines, what happens if the current state is removed? What happens if the last remaining state is removed? These questions cannot be answered in a generic, language independent way. We therefore allow the base visitor to be extended with custom state migration logic to address such questions. If such additional migration steps are realized as edit operations as well, they can also be added to the global application history, to ensure that undo and replay maintain consistency.

The next section describes how these technique have been applied in the development of a live programming environment for the state machine language of Section 3.

5 Case Study: Live State Machine Language

5.1 Overview

Here we present a case study based on the simple State Machine Language (SML) used as the running example in Section 3. We have used both TMDIFF and RMPATCH to obtain a live programming environment for SML, called LiveSML. The static and run-time meta models of SML are shown in Fig. 12.
Towards Live Domain-Specific Languages

The run-time model (Fig. 12b) can be seen as an extension of the static meta model (Fig. 12a); it includes all the attributes and relations of the static model. However, to represent run-time state, there are additional attributes and relations that do not exist in the static meta model. For instance, run-time machines (\texttt{Mach} objects) have a \texttt{state} field, representing the current state. Furthermore, the \texttt{State} objects are extended with a \texttt{count} field, indicating how many times this state has been visited.

LiveSML consists of two application components, shown in the top row of Fig. 13. On the left, Fig. 13a shows the programming environment of LiveSML, which consists of an
Eclipse-based IDE for editing state machines, implemented in RASCAL. The editor shows the Doors1 state machine.

On the right, Fig. [13b] shows the execution of Doors1 as an interactive GUI. The user can click buttons corresponding to events defined in the state machine. The main window shows a textual rendering of the state machine model in tabular form. An asterisk indicates which state is the current one, and the column marked with the pound symbol indicates how many times a state has been visited. The bottom row shows the actual Doors1 state machine models. Fig. [13c] shows the static state machine model that represents the textual source code of Doors1 shown in the editor. Fig. [13d] shows the same state machine, represented as a dynamic model that is executing at runtime, which is shown in the GUI.

When a developer edits a textual model and saves a modified version, the programming environment applies TMDIFF to the current and the previous version of the textual model. It then passes the resulting delta to the executing program that embeds RMPATCH. Similarly, when the user triggers an event, the program calculates its own delta for updating its model elements. As a result, runtime model transformations result either from textual model edits or user-level application events.

5.2 Migrating Domain-Specific Runtime State

Since the deltas produced by TMDIFF only take the static meta model of the source into account, the generic RMPATCH system needs to be extended to support dealing with the state and count attributes. Note that in most cases, RMPATCH will simply leave these attributes intact, but in special cases, the outcome would lead to an inconsistent state of the execution.

We define domain-specific state migration logic by extending the ApplyDelta visitor provided by RMPATCH, as shown in Fig. [14]. The class ApplyDelta defines a visit method for each kind of edit supported by RMPATCH. For LiveSML, we address the following cases:

- **Creation of a new state.** The count attribute is initialized to 0 (lines 12–15).
- **Insertion of an element in an uninitialized machine.**
 When a state or group is inserted into a machine that has no current state (lines 24–29), it is initialized to the initial state (lines 43–54). The initial state is the first state in the textual model.
- **Deletion of the current state.** When a machine’s current state is deleted (lines 36–37), it is reinitialized to the initial state (lines 43–54).

Each domain-specific migration is represented using edit operations. For each required side effect, new edit objects are created. For instance, initializing the count field of a new state to 0, is enacted by a SetPrim edit, anchored at the new state, with a path to field “count”. Applying these operations through the extended visitor (MigrateSML) adds them to the application history of LiveSML.

5.3 Evolving and Using State Machines with LiveSML

The key point of LiveSML is that state machines can be edited and used at the same time. In a sense, the source and run-time models coevolve in lockstep: changes to the code are interleaved with user events, – both transform the runtime model using deltas. To illustrate this coevolution, we present a prototype live editing scenario with LiveSML.

Fig. [15] shows its general time line. The top row shows five successive versions of the state machine definition, starting in the version where there is no state machine at all (θ). The bottom row shows successive states of the executing state machine. Some state changes are triggered by source changes (e.g., from s0 to s1), while others result from user interactions (e.g., s2 to s3).

The details of the application state transitions are listed in Table [15]. The first two columns indicate the start source model and run-time model state. The third column ("Event") captures what happened ("saving" or "clicking an event button"). Each event causes a sequence of edits δi to be applied to the runtime model. Edits correspond directly to the operations generated by TMDIFF. One additional operation (rekey) is used to realign the internal object identities of the runtime model with the opaque identities used by TMDIFF; this operation is needed because the TMDIFF identities are not
not stable across revisions. The last column shows the origin of the edit operations: an edit can originate from a TMDIFF delta, a migration side-effect (as described in Section 5.2), or a user action. The sequence of δ_i ($i \in 1...41$) represents the full history of runtime model transformations.

Finally, Table 2 shows, yet again, the sequence of source models and program states of the LiveSML session, – this time showing both the editor and the runtime GUI. From left to right, the upper row shows states s_0 to s_3, and the bottom row s_4 to s_7. An empty cell indicates that nothing has changed in the editor with respect to the previous state.

We now briefly describe how each run-time model state s_n in the sequence results from textual model edits and user actions.

- s_0. The application starts and the initial model is \emptyset. Both the editor and GUI are empty.
- s_1. $Doors_1$ is entered into the editor, and saved. In response, the environment computes the difference TMDIFF \emptyset $Doors_1$. As a result, the GUI shows the execution of $Doors_1$. Both state count attributes are initialized to zero (δ_2 and δ_1). The machine’s initial state is closed (marked by *) and its count is set to one (δ_0 and δ_{10}).
- s_2. The user clicks button open, which triggers the transition and produces δ_{11} and δ_{12}.

<table>
<thead>
<tr>
<th>Model</th>
<th>State</th>
<th>Event</th>
<th>Edit Operation</th>
<th>Origin</th>
</tr>
</thead>
<tbody>
<tr>
<td>\emptyset</td>
<td>s_0</td>
<td>Save $Doors_1$</td>
<td>δ_1 create lang.sml.runtime.Mach $d1$</td>
<td>TMDIFF \emptyset $Doors_1$ side effect</td>
</tr>
<tr>
<td>$Doors_1$</td>
<td>s_1</td>
<td>Click open</td>
<td>δ_{11} d1.state = $d3$</td>
<td>user action</td>
</tr>
<tr>
<td>$Doors_1$</td>
<td>s_2</td>
<td>Click close</td>
<td>δ_{13} d1.state = $d2$</td>
<td>user action</td>
</tr>
<tr>
<td>$Doors_1$</td>
<td>s_3</td>
<td>Save $Doors_2$</td>
<td>δ_{15} create lang.sml.runtime.State $d7$</td>
<td>TMDIFF $Doors_1$, $Doors_2$ side effect</td>
</tr>
<tr>
<td>$Doors_2$</td>
<td>s_4</td>
<td>Click lock</td>
<td>δ_{21} d4.state = $d7$</td>
<td>user action</td>
</tr>
<tr>
<td>$Doors_2$</td>
<td>s_5</td>
<td>Save $Doors_3$</td>
<td>δ_{25} create lang.sml.runtime.Group $d11$</td>
<td>TMDIFF $Doors_2$, $Doors_3$</td>
</tr>
<tr>
<td>$Doors_3$</td>
<td>s_6</td>
<td>Save $Doors_4$</td>
<td>δ_{33} remove $d8$.states[2]</td>
<td>TMDIFF $Doors_3$, $Doors_4$</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>δ_{34} remove $d9$.transitions[1]</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>δ_{35} delete $d11$</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>δ_{36} delete $d12$</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>δ_{37} d13.state = $d9$</td>
<td>side effect</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>δ_{38} d9.count = 3</td>
<td>side effect</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>δ_{39} rekey $d8$ → $d13$</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>δ_{40} rekey $d9$ → $d14$</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>δ_{41} rekey $d10$ → $d15$</td>
<td></td>
</tr>
</tbody>
</table>

Table 1: Interleaved coevolution of models $Doors_n$ and run-time states s_n over time
Table 2: Sequence of screen shots of LiveSML’s programming environment (top) and running application (bottom) while in application state s_i ($i \in 0, ..., 7$) of the interactive session with LiveSML.

- **s_3**. The user clicks button *close*, which triggers the transition and produces δ_{13} and δ_{14}.

- **s_4**. The model is modified such that it becomes Doors_2. In response, the environment computes the difference between Doors_1 and Doors_2. The *count* attribute of the *locked* state is initialized to zero (delta_{16}). The UI now also displays buttons for the *lock* and *unlock* events.

- **s_5**. The user clicks button *lock*, which triggers the transition and produces operations δ_{23} and δ_{24}.

- **s_6**. The model is modified such that it becomes Doors_3. In response, the environment computes the difference between Doors_2 and Doors_3. This time, there are no migration side effects because the change has no semantic effect: grouping is just a scoping mechanism.

- **s_7**. Finally, the model is modified such that it becomes Doors_1 again. As a result of applying the differences, the current state *locked* is removed and therefore the current state is reinitialized to the first state *closed* (δ_{37}). Accordingly, its *count* is set to three (δ_{38}). Note that the buttons *lock* and *unlock* have been removed from the UI since no such events exist anymore.

The sequence of states of this LiveSML session shows the fine-grained interleaving of edit operations originating from different sources. The execution of the state machine adapts to both user events and changes in the source code. As such, LiveSML provides a very fluid developer experience. Long edit-complice cycles are completely eliminated.
6 Discussion and Related Work

This paper presents an approach for live programming environments for textual DSLs that builds on two reusable components: TMDIFF and RMPATCH. We reflect on limitations, challenges and future work, and discuss related work.

6.1 Towards Live Domain-Specific Languages

Live DSLs aim for a low representation gap between domain, notation and run time. Users can adapt runtime models directly from the textual source. We assume that the runtime meta model extends the static language meta model, such as is the case in LiveSML. This design choice facilitates applying changes of the source code to the running program. The assumption does not hold in general, however. For instance imperative languages have more complex mappings between code and execution. Such languages therefore offer less direct affordances over a program’s execution, breaking the continuous link between the mental model of the programmer, the code and the running program.

Edit scripts are commonly used to encode model differences between versions of models representing the abstract syntax of a language. Edit scripts precisely encode what changed and in which order, but not why these effects happen. Typically, language semantics refers to a formal definition of actions that include the precise causal relationships from which these runtime changes result, which also enables formal proofs. In our approach the behavioral evolution of executing models is influenced by the way model differences are computed. When entities are not detected as “the same” between versions the corresponding runtime objects will be removed or added, even if this was not the behavior intended by the user of the modeling language. This problem is not unique to our application of TMDIFF, since any differencing algorithm will have to use heuristics to match model elements. We hypothesize, however, that in the context of live programming where immediacy of feedback is paramount, changes tend to be small and local, reducing the risk of unintuitive matchings.

One question is whether replacing TMDIFF by an alternative algorithm would provide a better programmer experience. For instance, SiDiff [15,36], DSMDiff [24] or EMFCompare [6] may result in a more accurate matchings for specific circumstances. SiDiff in particular would be a candidate since it is independent from any kind of scoping rules used to create references between model elements. SiDiff can be configured to make the algorithm perform better based on certain language features. Unfortunately, adjusting the weights used in comparing language features, often requires substantial empirical testing [17].

The question is if similarity-based heuristics would offer more predictable differences, and as a result more predictable run time adaptation. Our hypothesis is that TMDIFF has the benefit that its mechanism for identifying model elements stays close to the textual source representation of a model, which is precisely the material the modeler is manipulating. Comparing alternative differencing approaches in terms of predictability and run time performance is part of future work.

Our experience in using TMDIFF and RMPATCH shows that migrating runtime state is complex. Even for a relatively simple language like LiveSML, the extensions of RMPATCH to migrate state must account for many possible transformation scenarios. Since edit operations are applied in sequence, one must make careful assumptions about the existence or absence of objects and references. The key question is then if the correct interleaving of migration edits with the original edits produced by TMDIFF could be automatically derived. In future work we plan to address this challenge by separately modeling and maintaining migration scenarios that abstract from underlying edits, and use dependency analysis to derive possible orderings of runtime model modifications.

Assessing if RMPATCH scales to larger systems requires additional case studies on real-world live DSLs, in particular those whose source and runtime meta models differ more substantially than in the case of LiveSML. To investigate this question further, we plan to apply RMPATCH to Micro-Machinations, a visual language and execution engine that enables game designers to adapt a game’s mechanics while it is running [42]. Its live programming environment is called Mechanics Design Assistant (MeDeA) [41].

The runtime meta model of Micro-Machinations adds a new level of dynamic instantiation: at runtime there are “instance” level models which are not directly represented by textual source code, but which depend on source-defined entity definitions. Such languages require a pipeline of coupled transformations between source and runtime. The question is how modification effects propagate in a well-defined way. This problem is not unlike migrating objects after a change in class (e.g., in Smalltalk), or database migration upon schema change. In fact, these kinds of migrations are instances of the general class of coupled transformations [19] where a transformation of one model induces a “coupled” transformation on another (possibly over a different meta model). Further research is needed to formalize runtime patching presented here using this framework. This could help to precisely delineate the scope and limitations of RMPATCH-like runtime adaptation.

Reversible transformations support features for programming environments such as undoing edits, rollback, restoring system states, replaying and debugging. RMPATCH operations can be augmented with extra information to make every edit operation – and thus complete edit scripts – reversible. The question is to what extent such features can
be support by generic, reusable components. Although it is clear how to “unapply” edit operations on the runtime model, performing this same operation on the textual source code requires more advanced machinery, such as origin tracking, source code formatting and reversing source-to-source transformations.

At this time, TMDIFF and RMPATCH offer no special support for model merging, which, for instance, would be interesting for hypothetical exploration of dynamic what-if scenarios. Further research is needed to investigate how different deltas produced by TMDIFF can be combined for this purpose and how to resolve merge conflicts at runtime.

6.2 Limitations of TMDiff

Unlike RMPATCH, the TMDIFF algorithm can be used independently. In this section we identify a number of limitations of TMDIFF as a separate component and discuss directions for further research.

The matching of entities uses textual deltas computed by `diff` as a guiding heuristic. In rare cases this affects the quality of the matching. For instance, `diff` works at the granularity of a line of code. As a result, any change on a line defining a semantic entity will incur the entity to be marked as added. The addition of a single comment may trigger this incorrect behavior. Furthermore, if a single line of code defined multiple entities, a single addition or removal will trigger the addition of all other entities. Nevertheless, we expect entities to be defined on a single line most of the time.

If not, the matching process can be made immune to such issues by first pretty-printing a textual model (without comments) before performing the textual comparison. The pretty-printer can then ensure that every definition is on its own line. Note, that simply projecting out all definition names and performing longest common subsequence (LCS) on the result sequences abstracts from a lot of textual context that is typically used by `diff`-like tools. In fact, this was our first approach to matching. The resulting matchings, however, contained significantly more false positives.

Another factor influencing the precision of the matchings is the dependence on the textual order of occurrence of names. As a result, when entities are moved without any further change, TMDIFF will not detect it as such. We have experimented with a simple move detection algorithm to mitigate this problem, however, this turned out to be too computationally expensive. Fortunately, edit distance problems with moves are well-researched, see, e.g., [35]. A related problem is that TMDIFF will always see renames as an addition and removal of an entity. In general, edit scripts consisting of long sequences of atomic operations are hard to understand. However, user-level composite operations such as renaming and more complex refactorings can be detected in existing sequences of atomic operations, e.g., using the approach proposed by Langer et al. [21], or the rule-based semantic lifting approach proposed by Kehrer et al. [14].

6.3 Related Work

The key contribution of this paper intersects two areas of related work: model differencing and dynamic adaptation of models at runtime. Below we discuss important related work in both these areas.

6.3.1 Model Differencing

Much work has been done in the research area of model comparison that relates to TMDIFF. We refer to a survey of model comparison approaches and applications by Stephan and Cordy for an overview [33]. In the area of model comparison, calculation refers to identifying similarities and differences between models, representation refers to the encoding form of the similarities and differences, and visualization refers to presenting changes to the user [17][33]. Here we focus on the calculation aspect.

Calculation involves matching entities between model versions. Strategies for matching model elements include matching by 1) static identity, relying on persistent global unique entity identifiers; 2) structural similarity, comparing entity features; 3) signature, using user defined comparison functions; 4) language specific algorithms that use domain specific knowledge [33]. With respect to this list, our approach represents a new point in the design space: matching by textual alignment of names.

The differencing algorithm underlying TMDIFF is directly based on Alanes and Porres’ seminal work [1]. The identification map between model elements is explicitly mentioned, but the main algorithm assumes that model element identities are stable. Additionally, TMDIFF supports elements without identity. In that case, TMDIFF performs a structural `diff` on the containment hierarchy (see, e.g., [25]).

TMDIFF’s differencing strategy resembles the model merging technique used Ensō [39]. The Ensō “merge” operator also traverses a spanning tree of two models in parallel and matches up object with the same identity. In that case, however, the objects are identified using primary keys, relative to a container (e.g., a set or list). This means that matching only happens between model elements at the same syntactic level of the spanning tree of an Ensō model. As a result, it cannot deal with “scope travel” as in Fig. 4, where the locked state moved from the global state to the locking scope. On the other hand, the matching is more precise, since it is not dependent on the heuristics of textual alignment.

Epsilon is a family of languages and tools for model transformation, model migration, refactoring and comparison [18]. It integrates HUTN [32], the OMG’s Human Us-
able Text Notation, to serialize models as text. As result, which elements define semantic identities is known for each textual serialization. In other words, unlike in our setting, HUTN provides a fixed concrete syntax with fixed scoping rules. TMDiff allows languages to have custom syntax, and custom binding semantics.

Lin et al. describe DSMDiff, a signature-based differencing approach which is intended specifically for Domain-Specific Modeling Languages [24]. DSMDiff uses a signature-based matching over node and edge model elements, augmented by structural matching when the signature-based matching produces multiple matching candidates.

Maoz et al. propose semantic differencing, an approach that defines diff operators for comparing two models where the resulting differences are presented as a set of semantic diff witnesses, instances of the first model that are not instances of the second [26]. These instances are concrete examples explaining how the models differ. Maoz and Ringert relate syntactic changes to semantic witnesses by defining necessary and sufficient sets of change operations [25].

Langer et al. present a general approach for semantic differencing that can be customized for specific modeling languages. This approach is based on the behavioral semantics of a modeling language [20]. Two versions of a model are executed to capture execution traces that represent its semantic interpretation. Comparing these traces then provides a “semantic” interpretation of the difference between the two versions. In contrast, our approach starts at the opposite end: instead of using execution traces to explain syntactic differences, we use syntactic differences to drive the execution in the first place.

Cicchetti et al. propose a representation of model differences which is model-based, transformative, compositional and metamodel independent [4]. Differences are represented as models that can be applied as patches to arbitrary models. Although no special extension points are offered for supporting runtime state migrations, the model-based differences themselves could be used to represent them.

6.3.2 Dynamic Adaptation

“Models at runtime” is a well-researched topic, as, for instance, witnessed by the long running workshop on Models@run.time [12]. Executable modeling can be considered a subdomain of models at runtime, where a software system’s execution is defined by a model interpreter. Executable modeling was pioneered in the context of the Kermeta system [5,30]. Kermeta is also the basis for recent work on omniscient debugging features for xDSMLs [2]. Omniscient debuggers allow the execution of a program or model to be reversed and replayed. This work can be positioned on an orthogonal axis of “liveness”, where the focus is on providing better feedback through time travel. We consider our delta-based approach to be a fruitful ground for further exploration of such features. In the LiveSML case study we already have implemented a reversible history of application state. However, a particular challenge will be to apply reversed edits back to the source code of a DSL program.

Models at runtime in general are often motivated from the angle of dynamic adaptation. For instance, Morin et al. [29] describe an architecture to support adaptation at runtime through aspect weaving. However, this work focuses on adapting behavior and dynamically selecting alternative variants of behavior, rather than changing the runtime models themselves.

The specific requirements for runtime meta modeling are explored by Lehmann et al. [22]. The authors present a process to identify the core runtime concepts occurring in runtime models. In particular, they propose to identify possible model adaptations at runtime, to explicitly address potential runtime consistency issues. In our case we allow any kind of modification, but leave the door open to implement arbitrary runtime state migration policies.

RMPATCH requires the runtime meta model to be an “extension” of the static meta model. This relation is similar to the concept of “subsumption” in description logics [27]. Although we have not yet explored this link in more detail, it would allow formal checking of whether a runtime meta model is suitable for live patching. Another assumption underlying RMPATCH is that it should be possible to pause the model interpreter at a stable point in the execution in order to apply the runtime modifications. This is related to the concept of quiescence explored in the area of dynamic software updating [44].

7 Conclusion

Live programming promises to improve developer experience through immediate and continuous feedback. These benefits have not yet been explored from the perspective of executable domain-specific modeling languages. In this paper we have described a framework for developing “live textual languages”, based on a meta modeling foundation. Our framework consists of two components.

First, we presented TMDiff, a novel model differencing algorithm, based on textual differencing and origin tracking. Origin tracking traces the identity of an element back to the symbolic name that defines it in the textual source of a model. Using textual differencing these names can be aligned between versions of a model. Combining the origin relation and the alignment of names is sufficient to identify the model elements themselves. It then becomes possible to apply standard model differencing algorithms. TMDiff is a fully language parametric approach to textual model differencing. A prototype of TMDiff has been implemented in the RASCAL meta programming language [16].
The second component, RMPATCH, represents an architecture for dynamically adapting runtime models which encode the execution of the model. RMPATCH receives model deltas from TMDIFF, and evolves the execution accordingly. To avoid information loss and invalid runtime states, RMPATCH can be extended to define custom, language-specific migration policies. RMPATCH is used in the development of a live state machine DSL, which allows simultaneous editing and using of state machine definitions.

To the best of our knowledge, this paper is the first work connecting the worlds of model differencing and dynamic adaptation of models at runtime. Nevertheless, some important directions for further research remain. The most important directions are formalizing the relation between static meta model and (extended) runtime meta model of a DSL, investigating how dependencies between edit operations can be inferred and used to (re)order their application, and determining how to separately model and maintain run-time state migration scenarios at a higher level of abstraction. Ultimately, we expect that delta-based runtime adaptation provides a fertile foundation for developing live programming support for executable DSLs.

Acknowledgements

We thank the reviewers for their insightful comments that helped improve this paper.

References

