Preoperative functional status is not associated with postoperative surgical complications in low risk patients undergoing esophagectomy
van Egmond, M.A.; van der Schaaf, M.; Klinkenbijl, J H G; Engelbert, R.H.H.; van Berge Henegouwen, Mark I

Citation for published version (APA):
Preoperative functional status is not associated with postoperative surgical complications in low risk patients undergoing esophagectomy

van Egmond M.A.1-3, van der Schaaf M.1,2, Klinkenbijl J.H.G.4,5, van Berge Henegouwen M.I.6, Engelbert R.H.H.1,2

1Academic Medical Center, University of Amsterdam, Rehabilitation, Amsterdam, Netherlands, 2ACHIEVE, Center of Applied Research, Amsterdam University of Applied Sciences, Faculty of Health, Amsterdam, Netherlands, 3European School of Physiotherapy, Amsterdam University of Applied Sciences, Faculty of Health, Amsterdam, Netherlands, 4Geleé Hospital, Surgery, Apeldoorn, Netherlands, 5University of Amsterdam, Amsterdam, Netherlands, 6Academic Medical Center, University of Amsterdam, Surgery, Amsterdam, Netherlands

Introduction

- Esophagectomy is associated with 60% of postoperative complications (POC).1
- Preoperative physical activity and training decrease postoperative pulmonary en cardiac complications in major thoracic surgery.
- This has hardly been evaluated in patients undergoing esophagectomy.
- If there is an association with postoperative complications, patients could benefit from a tailored physiotherapeutic intervention.

Methods

Measurements: Patients were measured 1 day before surgery on aspects of functional status and compared to predictive values (figure 2).

Outcome: POC were measured according to the Clavien-Dindo classification for postoperative complications, where complications > grade 2 require surgical or radiological interventions.2

Statistical analysis: Univariate and multivariate backward regression analysis was used to determine the association between functional status and POC.

Results

- Preoperative functional status was on average higher than predicted (table 1).
- Despite high preoperative functional status, 55 patients developed a POC (61.1%) of which 32.2% were gastrointestinal and 19.1% pulmonary.
- 28 patients with POC developed more than one complication.
- 26 patients suffered from a grade 3a complication or worse (figure 3).

Discussion & Conclusions

- IMS, HGS, physical activities and QoL were not associated with POC, because of:
 - A high preoperative functional status
 - A high rate of gastrointestinal complications, obviously unrelated to functional status.
 - A relatively low percentage of pulmonary complications.

Recommendations

- Carefully assess the association between preoperative functional status and POC and relate this to patient- and surgery specific characteristics, before indicating a preoperative physiotherapy intervention.
- Risk stratification should be applied to determine who might benefit from a preoperative physiotherapy intervention.

Participants

From March 2012 to October 2014, 94 patients scheduled for esophagectomy (figure 1) at the outpatient clinic of a large tertiary referral center were eligible for the study.

Mean age (s.d.) was 63.8 years (9.4) and 74 patients were male.

Figure 1: Esophagectomy with gastric tube reconstruction.

Figure 2: Aspects of functional status measured.

Figure 3: Clavien-Dindo classification.

<table>
<thead>
<tr>
<th>Indicator of functional status</th>
<th>IQR</th>
<th>P-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>IMS (kg), mean (s.d.)</td>
<td>62.2 (36.5)</td>
<td></td>
</tr>
<tr>
<td>Percentage of predicted IMS, mean (s.d.)</td>
<td>12.1 (42.7)</td>
<td></td>
</tr>
<tr>
<td>HGS (kilograms), median (i.q.r)</td>
<td>42.5 (15.5)</td>
<td></td>
</tr>
<tr>
<td>Percentage of predicted HGS, mean (s.d.)</td>
<td>116.0 (30.5)</td>
<td></td>
</tr>
<tr>
<td>Physical activities (kcal/day), median (i.q.r)</td>
<td>855.7 (707.5)</td>
<td></td>
</tr>
<tr>
<td>QoL, median (i.q.r)</td>
<td>83.3 (16.7)</td>
<td></td>
</tr>
</tbody>
</table>

Table 1: Preoperative functional status.

<table>
<thead>
<tr>
<th>Univariate analysis</th>
<th>Multivariate analysis</th>
</tr>
</thead>
<tbody>
<tr>
<td>Odds Ratio</td>
<td>P-value</td>
</tr>
<tr>
<td>Conventional risk factors</td>
<td></td>
</tr>
<tr>
<td>ASA cl. I vs. II</td>
<td>0.63 (0.54, 0.74)</td>
</tr>
<tr>
<td>Smoking</td>
<td>2.88 (0.94, 8.79)</td>
</tr>
<tr>
<td>Physical Activities (kcal/day)</td>
<td>1.00 (1.00, 1.01)</td>
</tr>
</tbody>
</table>

Table 2: Results after multivariate analysis.

References

Contact details

Maarten van Egmond, MSc.
E: m.a.vaneegmond@amc.uva.nl
T: +31621157870

Acknowledgements

- The medical ethics committee waived the need for informed consent.
- The first author received an NWO Doctoral Grant for Teachers in 2014.
- This poster is based on a peer reviewed article (PMID26918788).
- Presented at the WCPT Congress 2017, Cape Town.

Powerpoint presentation