Protein intake, nutritional status and outcomes in ICU survivors

Nutritional aspects in the ICU

Weijs, P. J. M.; Mogensen, K. M.; Rawn, J. D.; Robinson, M. K.; Christopher, K. B.

Publication date
2016

Document Version
Final published version

Published in
Intensive Care Medicine Experimental

License
CC BY

Citation for published version (APA):

General rights
It is not permitted to download or to forward/distribute the text or part of it without the consent of the author(s) and/or copyright holder(s), other than for strictly personal, individual use, unless the work is under an open content license (like Creative Commons).

Disclaimer/Complaints regulations
If you believe that digital publication of certain material infringes any of your rights or (privacy) interests, please let the Library know, stating your reasons. In case of a legitimate complaint, the Library will make the material inaccessible and/or remove it from the website. Please contact the library:
https://www.amsterdamuas.com/library/contact/questions, or send a letter to: University Library (Library of the University of Amsterdam and Amsterdam University of Applied Sciences), Secretariat, Singel 425, 1012 WP Amsterdam, The Netherlands. You will be contacted as soon as possible.
Introduction: Eosinopenia is associated with short term adverse outcomes in the critically ill. In survivors of critical care, it is not known if eosinopenia is predictive of adverse outcomes following hospital discharge. Objectives: We hypothesized that eosinopenia at ICU admission would be associated with increased hospital readmission rates and higher mortality following hospital discharge. Methods: We performed a two center observational study of patients treated in medical and surgical intensive care units. We studied 68,648 patients, age \geq 18 years, who received critical care between 1998 and 2012 and survived hospitalization. The exposure of interest was absolute eosinophil count within 48 hours of ICU admission and categorized a priori as $<$10/ul, 10-50/ul, 50-350/ul (normal range) and $>$350/ul. The primary outcome was all cause mortality in the 90 days following hospital discharge determined using the US Social Security Administration Death Master File. 365-day follow-up was present in all cohort patients. Adjusted odds ratios were estimated by multivariable logistic regression models with inclusion of covariate terms for age, race, gender, Deyo-Charlson Index, patient type (medical versus surgical), sepsis and number of organs with acute failure.

Results: The cohort patients were 57.8 % male, 20.3 % nonwhite and 48.8 % surgical. 10.1 % of the cohort had sepsis, and the mean age was 61.7 years. Median [IQR] absolute eosinophil count was 90 [30–190]. 90-day post discharge mortality was 7.7 %. 30-day readmission rate was 14.3 %. A decreased absolute eosinophil count was a robustly associated with all-cause post discharge mortality as well as hospital readmission and discharge to a care facility instead of home. Patients with an absolute eosinophil count of \leq10/ul or 10-50/ul have an adjusted OR of 90-day post-discharge mortality of 1.58 (95%CI, 1.46-1.71; P < 0.001) or 1.49 (95%CI, 1.38-1.60; P < 0.001) relative to patients with an absolute eosinophil count of 50-350/ul. Patients with an absolute eosinophil count of \leq10/ul or 10-50/ul have an adjusted OR of 30-day readmission of 1.08 (95%CI, 1.01-1.15; P = 0.018) or 1.10 (95%CI, 1.04-1.17; P = 0.001) relative to patients with an absolute eosinophil count of 50-350/ul. Finally, patients with an absolute eosinophil count of \leq10/ul or 10-50/ul have an adjusted OR of discharge to a care facility of 1.34 (95%CI, 1.28-1.41; P < 0.001) or 1.30 (95%CI, 1.24-1.36; P < 0.001) relative to patients with an absolute eosinophil count of 50-350/ul. An absolute eosinophil count $>$350/ul was not associated with study outcomes.

Conclusions: In critical illness survivors, eosinopenia at ICU admission is a robust predictor of mortality following discharge, hospital readmission, and discharge to a care facility. Eosinopenia is a marker for ICU survivors at an especially high risk for adverse outcomes. Thus, patients with eosinopenia may benefit from closer post discharge follow-up and higher intensity rehabilitation.

Nutritional aspects in the ICU

A494

Protein intake, nutritional status and outcomes in ICU survivors

1VU University Medical Center Amsterdam, Department of Nutrition and Dietetics, Internal Medicine, Amsterdam, Netherlands; 2Amsterdam University of Applied Sciences, Amsterdam, Netherlands; 3Brigham and Women’s Hospital, Department of Nutrition, Boston, USA; 4 Brigham and Women’s Hospital, Department of Surgery, Boston, USA; 5Brigham And Women’s Hospital, Renal Division, Boston, USA; 6Brigham and Women’s Hospital, Channing Division of Network Medicine, Boston, USA

Correspondence: P.J.M. Weijns - Amsterdam University of Applied Sciences, Amsterdam, Netherlands

Intensive Care Medicine Experimental 2016, 4(Suppl 1):A494

Introduction: Critical illness is marked by hypermetabolism and increased protein catabolism. While studies suggest that protein delivery may be beneficial for critical illness outcomes, to date, limited information exists regarding the association between protein delivery during hospitalization and outcomes in ICU survivors following hospital discharge.

Objectives: We hypothesized that higher protein intake might have a protective effect in patients with malnutrition. Methods: We performed a single center observational study of patients treated in medical intensive care units in Boston, Massachusetts. We studied 801 patients age \geq 18 years, who received critical care following between 2004 and 2011 and survived to hospital discharge. All patients underwent a Registered Dietitian formal assessment within 48 hours of ICU admission. The exposure of interest, grams of protein per kilogram body weight delivered per day, was determined from all oral, enteral and parental sources for up to 28 days. Nutrition status was categorized as non-specific malnutrition, protein-energy malnutrition, or at risk for malnutrition via anthropometric measurements, clinical signs of malnutrition, malnutrition risk factors, and metabolic stress. The primary outcome was all cause 90-day post-discharge mortality. Adjusted odds ratios were estimated by mixed-effects logistic regression models to describe how 90-day post-discharge mortality differed with changes in protein delivery.

Results: The cohort was 55 % male, 79 % white with a mean age of 62.3 years. 22 % of the cohort had sepsis, 10 % had acute kidney injury and 53 % had non-cardiac acute respiratory failure. 59 % had non-specific malnutrition or protein-energy malnutrition. The 30, 90 and 365-day post-discharge mortality was 7.1 and 13.9 and 24.4 %. The average number of nutrition delivery days recorded was 15. In a mixed-effect logistic regression model adjusted for age, gender, race, Deyo-Charlson Index, acute organ failures, sepsis and percent energy needs met, 90-day post-discharge mortality rate was 17 % (95%CI: 6–26) lower for each 1 g/kg increase in daily protein delivery (P = 0.002) compared with the 90-day post-discharge mortality rate in the entire cohort [OR = 0.83 (95%CI 0.74-0.94; P = 0.002)]. In a subset of patients with malnutrition (n = 473): 90-day post-discharge mortality rate was 26 % (95%CI: 6–26) lower for each 1 g/kg increase in daily protein delivery (P < 0.001) compared with the 90-day post-discharge mortality rate in the entire cohort [OR= 0.70 (95%CI 0.61-0.81; P < 0.001)].

Conclusions: In adult MICU patients who survive to hospital discharge, protein intake appears to be predictive of out of hospital outcomes. Patients with improvements in protein intake during hospitalization independent of energy intake have decreased mortality in the 3 months following hospital discharge. The achievement of ideal protein delivery may be an important factor in ICU survivorship, especially in malnutrition.

A495

Safety and efficacy of a new parenteral lipid emulsion (SMOFlipid) in surgical critically ill patients

Z. Tang, C. Qiu, B. Ouyang, C. Cai, K. Guan

The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China

Correspondence: Z. Tang - The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China

Intensive Care Medicine Experimental 2016, 4(Suppl 1):A495

Introduction: SMOFlipid 20 % is intravenous lipid emulsion (ILE) containing long-chain triglycerides (LCT), medium-chain triglycerides (MCT), olive oil, and fish oil as a mixed emulsion containing α-tocopherol. The aim was to assess the efficacy of this new ILE in surgery compared with MCT/LCT, and it was tested for safety, tolerance, metabolic and clinical efficacy in surgical patients. Objectives: To assess the efficacy of this new ILE in gastrointestinal surgery compared with MCT/LCT. Methods: In this prospective study, 42 patients were randomized to SMOFlipid 20 % or MCT/LCT (Lipovenos 20 %) group. Clinical and biochemistry data were collected. Inflammatory markers (CRP, IL-6) and liver function indicators (ALT,AST,TBIL) were measured.

Results: 32 patients (17 males and 15 females) with a mean age of 51 years completed the study. The patients’ baseline data (age, gender, APACHE II) were similar in two groups. The increment of triglyceride on day 5 from baseline was significantly lower in SMOFlipid group than in Lipovenos MCT/LCT group (P < 0.05). The concentrations of alanine transaminase (ALT), aspartate transaminase (AST) and totalbilirubin on day 5